In this paper, we propose a new challenging task named as \textbf{partial multi-view few-shot learning}, which unifies two tasks, i.e. few-shot learning and partial multi-view learning, together. Different from the traditional few-shot learning, this task aims to solve the few-shot learning problem given the incomplete multi-view prior knowledge, which conforms more with the real-world applications. However, this brings about two difficulties within this task. First, the gaps among different views can be large and hard to reduce, especially with sample scarcity. Second, due to the incomplete view information, few-shot learning becomes more challenging than the traditional one. To deal with the above issues, we propose a new \textbf{Meta-alignment and Context Gated-aggregation Network} by equipping meta-alignment and context gated-aggregation with partial multi-view GNNs. Specifically, the meta-alignment effectively maps the features from different views into a more compact latent space, thereby reducing the view gaps. Moreover, the context gated-aggregation alleviates the view-missing influence by leveraging the cross-view context. Extensive experiments are conducted on the PIE and ORL dataset for evaluating our proposed method. By comparing with other few-shot learning methods, our method obtains the state-of-the-art performance especially with heavily-missing views.


翻译:在本文中,我们提出一个新的具有挑战性的任务,名为\ textbf{ 部分多视图的多镜头学习},它集中了两项任务,即少见的学习和部分多视图学习。与传统的少见学习不同,这项任务的目的是解决少见的学习问题,因为之前的多视图知识不完整,更符合现实世界的应用。然而,这在这项任务中带来了两个困难。第一,不同观点之间的差距可能很大,很难缩小,特别是抽样少见。第二,由于阅读信息不完整,少见的学习比传统的少见学习更具挑战性。为了处理上述问题,我们提出了一个新的\ textbf{Meta-Agrat-Agate-Gagation Net-Nation Net Network Net},通过部分多视图 GNNps 配置元组合和背景合并来解决少见的学习问题。具体来说,元组合有效地将不同观点的特征描绘成一个更加紧凑的隐蔽的空间,从而缩小了视觉差距。此外,背景的隔阂比一些。为了处理上述问题,背景,我们的拟议的实验方法比重评估了我们所建的数据库。

0
下载
关闭预览

相关内容

小样本学习(Few-Shot Learning,以下简称 FSL )用于解决当可用的数据量比较少时,如何提升神经网络的性能。在 FSL 中,经常用到的一类方法被称为 Meta-learning。和普通的神经网络的训练方法一样,Meta-learning 也包含训练过程和测试过程,但是它的训练过程被称作 Meta-training 和 Meta-testing。
【Google-CMU】元伪标签的元学习,Meta Pseudo Labels
专知会员服务
31+阅读 · 2020年3月30日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Attentive Graph Neural Networks for Few-Shot Learning
Arxiv
40+阅读 · 2020年7月14日
AdarGCN: Adaptive Aggregation GCN for Few-Shot Learning
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
11+阅读 · 2018年7月8日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员