At the core of each blockchain system, parties communicate through a peer-to-peer (P2P) overlay. Unfortunately, recent evidence suggests these P2P overlays represent a significant bottleneck for transaction throughput and scalability. Furthermore, they enable a number of attacks. We argue that these performance and security problems arise because current P2P overlays cannot fully capture the complexity of a blockchain system as they do not offer flexibility to accommodate node heterogeneity. We propose a novel approach to address these issues: P2P Overlay Domains with Sovereignty (PODS), which allows nodes in a single overlay to belong to multiple heterogeneous groups, called domains. Each domain features its own set of protocols, tailored to the characteristics and needs of its nodes. To demonstrate the effectiveness of PODS, we design and implement two novel node discovery protocols: FedKad and SovKad. Using a custom simulator, we show that node discovery using PODS (SovKad) architecture outperforms both single overlay (Kademlia) and multi-overlay (FedKad) architectures in terms of hop count and success rate, though FedKad requires slightly less bandwidth.
翻译:暂无翻译