The scarcity of high-dimensional causal inference datasets restricts the exploration of complex deep models. In this work, we propose a method to generate a synthetic causal dataset that is high-dimensional. The synthetic data simulates a causal effect using the MNIST dataset with Bernoulli treatment values. This provides an opportunity to study varieties of models for causal effect estimation. We experiment on this dataset using Dragonnet architecture (Shi et al. (2019)) and modified architectures. We use the modified architectures to explore different types of initial Neural Network layers and observe that the modified architectures perform better in estimations. We observe that residual and transformer models estimate treatment effect very closely without the need for targeted regularization, introduced by Shi et al. (2019).
翻译:高维因果推断数据集的稀缺限制了对复杂深层模型的探索。 在这项工作中,我们提出了一个生成高维合成因果数据集的方法。合成数据利用MNIST数据集模拟因果效应,并带有Bernoulli处理值。这为研究各种因果估计模型提供了机会。我们利用龙网架构(Shi等人(2019年))和经修改的架构对这一数据集进行实验。我们利用经修改的架构探索不同种类的初始神经网络层,并观察经修改的结构在估算方面表现更好。我们观察到,残余和变压模型非常密切地估计了处理效果,而不需要由Shi等人(2019年)引入的定向规范。</s>