Existing temporal community search suffers from two defects: (i) they ignore the temporal proximity between the query vertex $q$ and other vertices but simply require the result to include $q$. Thus, they find many temporal irrelevant vertices (these vertices are called \emph{query-drifted vertices}) to $q$ for satisfying their cohesiveness, resulting in $q$ being marginalized; (ii) their methods are NP-hard, incurring high costs for exact solutions or compromised qualities for approximate/heuristic algorithms. Inspired by these, we propose a novel problem named \emph{query-centered} temporal community search to circumvent \emph{query-drifted vertices}. Specifically, we first present a novel concept of Time-Constrained Personalized PageRank to characterize the temporal proximity between $q$ and other vertices. Then, we introduce a model called $\beta$-temporal proximity core, which can combine temporal proximity and structural cohesiveness. Subsequently, our problem is formulated as an optimization task that finds a $\beta$-temporal proximity core with the largest $\beta$. To solve our problem, we first devise an exact and near-linear time greedy removing algorithm that iteratively removes unpromising vertices. To improve efficiency, we then design an approximate two-stage local search algorithm with bound-based pruning techniques. Finally, extensive experiments on eight real-life datasets and nine competitors show the superiority of the proposed solutions.


翻译:现有的时间社区搜索存在两个缺陷:(一) 它们忽略了查询顶点$Q和其他顶点之间的时间接近时间距离,但只是要求将结果包括$q美元。 因此, 它们发现许多时间上无关的顶点( 这些顶点被称为 emph{query-rifed vertices} ) 到 $q 美元, 以满足它们的凝聚力, 导致美元被边缘化;(二) 它们的方法很硬, 精确解决方案的成本很高, 或近似/ 超常算法的质量差。 受这些启发, 我们提出了一个名为\emph{query- central} 的新的问题。 因此, 我们首先提出一个新概念, 时间调调的Phillical Refortical le levelopices (这些), 时间调整的Philliformalalalalal), 然后我们提出一个名为 $- developalalal- lax lax lax lax lax lax lax latical lax lax latical- we for latial lax latical- latical lax lax lax lax latical latical- lax lax latical le le le latical le- latical- le le- le- le- le- le- le- latical latical le- le- le- latical le- le- latical- lax lex latical- le- le- le- latical- le- le- le- le- le- le- latical- latical- le- le- le- le- le- le- lacal le- le- le- le- le- le- le- lacal- lacal lacal- le- le le- le- le-

0
下载
关闭预览

相关内容

PageRank,网页排名,又称网页级别、Google左侧排名或佩奇排名,是一种由[1] 根据网页之间相互的超链接计算的技术,而作为网页排名的要素之一,以Google公司创办人拉里·佩奇(Larry Page)之姓来命名。Google用它来体现网页的相关性和重要性,在搜索引擎优化操作中是经常被用来评估网页优化的成效因素之一。Google的创始人拉里·佩奇和谢尔盖·布林于1998年在斯坦福大学发明了这项技术。
专知会员服务
25+阅读 · 2021年4月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Interest-aware Message-Passing GCN for Recommendation
Arxiv
12+阅读 · 2021年2月19日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员