This paper revisits Kimera-Multi, a distributed multi-robot Simultaneous Localization and Mapping (SLAM) system, towards the goal of deployment in the real world. In particular, this paper has three main contributions. First, we describe improvements to Kimera-Multi to make it resilient to large-scale real-world deployments, with particular emphasis on handling intermittent and unreliable communication. Second, we collect and release challenging multi-robot benchmarking datasets obtained during live experiments conducted on the MIT campus, with accurate reference trajectories and maps for evaluation. The datasets include up to 8 robots traversing long distances (up to 8 km) and feature many challenging elements such as severe visual ambiguities (e.g., in underground tunnels and hallways), mixed indoor and outdoor trajectories with different lighting conditions, and dynamic entities (e.g., pedestrians and cars). Lastly, we evaluate the resilience of Kimera-Multi under different communication scenarios, and provide a quantitative comparison with a centralized baseline system. Based on the results from both live experiments and subsequent analysis, we discuss the strengths and weaknesses of Kimera-Multi, and suggest future directions for both algorithm and system design. We release the source code of Kimera-Multi and all datasets to facilitate further research towards the reliable real-world deployment of multi-robot SLAM systems.
翻译:本文重新讨论了多机器人同时定位与制图(SLAM)系统 Kimera-Multi,旨在将其部署到现实世界。本文有三个主要贡献。首先,我们描述了 Kimera-Multi 的改进,使其能够应对大规模的现实世界部署,特别是处理间歇性和不可靠的通信。其次,我们收集并发布了在麻省理工学院校园进行的实时实验中获得的具有挑战性的多机器人基准数据集,包括准确的参考轨迹和制图进行评估。这些数据集包括多达8台机器人穿越长距离(高达8公里),包含许多具有挑战性的元素,如严重的视觉模糊(例如在地下隧道和走廊中),混合室内和室外轨迹以及不同的照明条件和动态实体(例如行人和汽车)。最后,我们评估了 Kimera-Multi 在不同通信场景下的弹性,并与集中式基准系统进行了定量比较。基于现场实验和后续分析的结果,我们讨论了 Kimera-Multi 的优点和缺点,并提出了算法和系统设计的未来方向。我们发布了 Kimera-Multi 的源代码和所有数据集,以促进更多研究,以便可靠地在多机器人 SLAM 系统中部署。