Guessing Random Additive Noise Decoding (GRAND) is a universal decoding algorithm that can be used to perform maximum likelihood decoding. It attempts to find the errors introduced by the channel by generating a sequence of possible error vectors in order of likelihood of occurrence and applying them to the received vector. Ordered reliability bits GRAND (ORBGRAND) integrates soft information received from the channel to refine the error vector sequence. In this work, ORBGRAND is modified to produce a soft output, to enable its use as an iterative soft-input soft-output (SISO) decoder. Three techniques specific to iterative GRAND-based decoding are then proposed to improve the error-correction performance and decrease computational complexity and latency. Using the OFEC code as a case study, the proposed techniques are evaluated, yielding substantial performance gain and astounding complexity reduction of 48\% to 85\% with respect to the baseline SISO ORBGRAND.
翻译:随机添加噪声解码( GRAND) 是一种通用解码算法, 可用于进行最大可能的解码。 它试图通过生成一系列可能的误差矢量来查找频道引入的错误, 从而根据发生的可能性生成一系列可能的误差矢量并将其应用到接收的矢量中。 定序可靠性比特GRAND (ORBGRAND) 整合了从频道收到的软信息, 以完善误差矢量序列 。 在这项工作中, ORBGRAND 被修改为生成一个软输出, 以使其能够作为迭代软投入软输出( SISO) 的解码器使用。 然后, 提出了三种用于迭代 GRAND 解码的特殊技术来改进错误校正性, 降低计算复杂性和延时。 使用 OFEC 代码作为案例研究, 对拟议技术进行了评估, 产生巨大的性能增益, 并使基准 SISO ORBGRAND 的复杂度降低48 至 85 。