Guessing random additive noise decoding (GRAND) is a universal maximum-likelihood decoder that recovers code-words by guessing rank-ordered putative noise sequences and inverting their effect until one or more valid code-words are obtained. This work explores how GRAND can leverage additive-noise statistics and channel-state information in fading channels. Instead of computing per-bit reliability information in detectors and passing this information to the decoder, we propose leveraging the colored noise statistics following channel equalization as pseudo-soft information for sorting noise sequences. We investigate the efficacy of pseudo-soft information extracted from linear zero-forcing and minimum mean square error equalization when fed to a hardware-friendly soft-GRAND (ORBGRAND). We demonstrate that the proposed pseudo-soft GRAND schemes approximate the performance of state-of-the-art decoders of CA-Polar and BCH codes that avail of complete soft information. Compared to hard-GRAND, pseudo-soft ORBGRAND introduces up to 10dB SNR gains for a target 10^-3 block-error rate.
翻译:随机添加性噪音解码(GRAND)是一个通用的、最大相似的解码器(GRAND),该解码器通过猜测按级顺序排列的模拟噪声序列并颠倒其效果直至获得一个或多个有效编码词来恢复编码词的作用。 这项工作探索GRAND如何在淡化的渠道中利用添加性噪音统计数据和频道状态信息。 我们提议,在探测器中计算每位可靠信息,并将这些信息传递给解码器,而不是利用频道的彩色噪音统计数据,将其作为用于排序噪音序列的假软信息。 我们调查从线性零断线和最小平均平差中提取的假软件信息在装入硬件友好软GRAND(ORBGRAND)时的功效。 我们证明,拟议的假软GRAND计划接近了使用完整软信息的CA-POLAR和BCH代码的状态解码员的性能。 与硬GRAND、伪软软 OGBGRAAND 相比, 将目标10DB SNR收益提高到10dB SNR。