Link prediction aims to infer the link existence between pairs of nodes in networks/graphs. Despite their wide application, the success of traditional link prediction algorithms is hindered by three major challenges -- link sparsity, node attribute noise and dynamic changes -- that are faced by many real-world networks. To address these challenges, we propose a Contextualized Self-Supervised Learning (CSSL) framework that fully exploits structural context prediction for link prediction. The proposed CSSL framework learns a link encoder to infer the link existence probability from paired node embeddings, which are constructed via a transformation on node attributes. To generate informative node embeddings for link prediction, structural context prediction is leveraged as a self-supervised learning task to boost the link prediction performance. Two types of structural context are investigated, i.e., context nodes collected from random walks vs. context subgraphs. The CSSL framework can be trained in an end-to-end manner, with the learning of model parameters supervised by both the link prediction and self-supervised learning tasks. The proposed CSSL is a generic and flexible framework in the sense that it can handle both attributed and non-attributed networks, and operate under both transductive and inductive link prediction settings. Extensive experiments and ablation studies on seven real-world benchmark networks demonstrate the superior performance of the proposed self-supervision based link prediction algorithm over state-of-the-art baselines, on different types of networks under both transductive and inductive settings. The proposed CSSL also yields competitive performance in terms of its robustness to node attribute noise and scalability over large-scale networks.


翻译:链接预测旨在推断网络/绘图网对节点之间存在的联系。尽管传统链接预测算法的应用范围广泛,但传统链接预测算法的成功受到三大挑战的阻碍 -- -- 许多现实世界网络所面临的链路、节点属性噪音和动态变化 -- -- 许多现实世界网络面临的三重挑战 -- -- 链接的偏斜、节点属性噪音和动态变化。为了应对这些挑战,我们提议了一个“环境化自闭学习”框架,充分利用结构背景背景预测来进行链接预测。拟议的CSSL框架可以学习一个链接编码,从配对的节点嵌入的链接概率来推断存在的可能性。为了产生信息化的连接预测的节点嵌入类型,结构背景预测被作为自我监督的学习任务加以利用,以提高链接预测绩效的绩效。为了应对这些挑战,我们提议了两种结构背景,即从随机行走收集的背景节点与背景次谱。CSSL框架可以以端对端到端通向端方式进行培训,同时学习由链接预测和自我监控的学习状态参数。拟议的CSS LL在高级网络中进行直观和弹性的预测,在不连续的轨道上,在拟议的轨道上运行的交付的轨道上,在真实和递流流流流路路路基路路路路路路路路路路基下进行。

0
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。
专知会员服务
88+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员