This work proposes the M3E2, a multi-task learning neural network model to estimate the effect of multiple treatments. In contrast to existing methods, M3E2 can handle multiple treatment effects applied simultaneously to the same unit, continuous and binary treatments, and many covariates. We compared M3E2 with three baselines in three synthetic benchmark datasets: two with multiple treatments and one with one treatment. Our analysis showed that our method has superior performance, making more assertive estimations of the multiple treatment effects.
翻译:这项工作提出了M3E2, 这是一种多任务学习神经网络模型,用以估计多重治疗的效果。 与现有方法不同, M3E2可以同时处理同一单位、连续和二进式治疗以及许多共变。 我们把M3E2与三个合成基准数据集中的三个基线进行了比较:两个有多重治疗,一个有一次治疗。 我们的分析表明,我们的方法表现优异,对多重治疗效果进行了更明确的估计。