Recently, there is a growing interest in developing next-generation recommender systems (RSs) based on pretrained large language models (LLMs), fully utilizing their encoded knowledge and reasoning ability. However, the semantic gap between natural language and recommendation tasks is still not well addressed, leading to multiple issues such as spuriously-correlated user/item descriptors, ineffective language modeling on user/item contents, and inefficient recommendations via auto-regression, etc. In this paper, we propose CLLM4Rec, the first generative RS that tightly integrates the LLM paradigm and ID paradigm of RS, aiming to address the above challenges simultaneously. We first extend the vocabulary of pretrained LLMs with user/item ID tokens to faithfully model the user/item collaborative and content semantics. Accordingly, in the pretraining stage, a novel soft+hard prompting strategy is proposed to effectively learn user/item collaborative/content token embeddings via language modeling on RS-specific corpora established from user-item interactions and user/item features, where each document is split into a prompt consisting of heterogeneous soft (user/item) tokens and hard (vocab) tokens and a main text consisting of homogeneous item tokens or vocab tokens that facilitates stable and effective language modeling. In addition, a novel mutual regularization strategy is introduced to encourage the CLLM4Rec to capture recommendation-oriented information from user/item contents. Finally, we propose a novel recommendation-oriented finetuning strategy for CLLM4Rec, where an item prediction head with multinomial likelihood is added to the pretrained CLLM4Rec backbone to predict hold-out items based on the soft+hard prompts established from masked user-item interaction history, where recommendations of multiple items can be generated efficiently.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Interactive Visual Task Learning for Robots
Arxiv
0+阅读 · 2023年12月20日
Arxiv
0+阅读 · 2023年12月16日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
31+阅读 · 2021年6月30日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Interactive Visual Task Learning for Robots
Arxiv
0+阅读 · 2023年12月20日
Arxiv
0+阅读 · 2023年12月16日
Arxiv
12+阅读 · 2021年7月26日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
31+阅读 · 2021年6月30日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
27+阅读 · 2017年12月6日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
37+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员