Distributed systems store data objects redundantly to balance the data access load over multiple nodes. Load balancing performance depends mainly on 1) the level of storage redundancy and 2) the assignment of data objects to storage nodes. We analyze the performance implications of these design choices by considering four practical storage schemes that we refer to as clustering, cyclic, block and random design. We formulate the problem of load balancing as maintaining the load on any node below a given threshold. Regarding the level of redundancy, we find that the desired load balance can be achieved in a system of $n$ nodes only if the replication factor $d = \Omega(\log(n)^{1/3})$, which is a necessary condition for any storage design. For clustering and cyclic designs, $d = \Omega(\log(n))$ is necessary and sufficient. For block and random designs, $d = \Omega(\log(n))$ is sufficient but unnecessary. Whether $d = \Omega(\log(n)^{1/3})$ is sufficient remains open. The assignment of objects to nodes essentially determines which objects share the access capacity on each node. We refer to the number of nodes jointly shared by a set of objects as the \emph{overlap} between those objects. We find that many consistently slight overlaps between the objects (block, random) are better than few but occasionally significant overlaps (clustering, cyclic). However, when the demand is ''skewed beyond a level'' the impact of overlaps becomes the opposite. We derive our results by connecting the load-balancing problem to mathematical constructs that have been used to study other problems. For a class of storage designs containing the clustering and cyclic design, we express load balance in terms of the maximum of moving sums of i.i.d. random variables, which is known as the scan statistic. For random design, we express load balance by using the occupancy metric for random allocation with complexes.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月5日
Arxiv
14+阅读 · 2021年7月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员