We consider Bayesian inverse problems wherein the unknown state is assumed to be a function with discontinuous structure a priori. A class of prior distributions based on the output of neural networks with heavy-tailed weights is introduced, motivated by existing results concerning the infinite-width limit of such networks. We show theoretically that samples from such priors have desirable discontinuous-like properties even when the network width is finite, making them appropriate for edge-preserving inversion. Numerically we consider deconvolution problems defined on one- and two-dimensional spatial domains to illustrate the effectiveness of these priors; MAP estimation, dimension-robust MCMC sampling and ensemble-based approximations are utilized to probe the posterior distribution. The accuracy of point estimates is shown to exceed those obtained from non-heavy tailed priors, and uncertainty estimates are shown to provide more useful qualitative information.


翻译:我们从理论上认为,这种先期样品具有不连续的特性,即使网络宽度是有限的,也具有不连续的特性。从数字上看,我们考虑到一维和二维空间域界定的分流问题,以说明这些前一和二维空间域的功效;利用MAP估计、尺寸-紫色MCMC取样和共性近似近似数据来探测远端分布;点数估计的准确性显示超过以前从非重尾尾部取得的准确性,而不确定性估计则显示提供更有用的定性信息。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
126+阅读 · 2021年6月4日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
5+阅读 · 2018年1月17日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员