Bayesian nonparametric methods are a popular choice for analysing survival data due to their ability to flexibly model the distribution of survival times. These methods typically employ a nonparametric prior on the survival function that is conjugate with respect to right-censored data. Eliciting these priors, particularly in the presence of covariates, can be challenging and inference typically relies on computationally intensive Markov chain Monte Carlo schemes. In this paper, we build on recent work that recasts Bayesian inference as assigning a predictive distribution on the unseen values of a population conditional on the observed samples, thus avoiding the need to specify a complex prior. We describe a copula-based predictive update which admits a scalable sequential importance sampling algorithm to perform inference that properly accounts for right-censoring. We provide theoretical justification through an extension of Doob's consistency theorem and illustrate the method on a number of simulated and real data sets, including an example with covariates. Our approach enables analysts to perform Bayesian nonparametric inference through only the specification of a predictive distribution.
翻译:贝叶斯非参数性方法是分析生存数据的流行选择,因为它们能够灵活地模拟生存时间的分布。这些方法通常在生存功能上使用非参数前使用一种非参数前使用,因为生存功能与右层审查数据相同。 引用这些前科,特别是在共差的情况下,可能具有挑战性,推论通常依赖于计算密集的Markov链Monte Carlo计划。 在本文中,我们以最近的工作为基础,将巴伊西亚的推论重新定位为根据所观察到的样品对人口无形值的预测分布,从而避免了指定一个复杂的前科。我们描述了基于相生层的预测更新,其中承认了一种可伸缩缩放的连续重要取样算法,以进行正确计算右层审查。我们通过扩展Dobob的一致性标语和说明若干模拟和真实数据集的方法,包括一个变量的示例。我们的方法使分析员能够仅仅通过预测分布的规格来进行巴伊斯的不相貌的推断。