This paper presents a new approach to Model Predictive Control for environments where essential, discrete variables are partially observed. Under this assumption, the belief state is a probability distribution over a finite number of states. We optimize a \textit{control-tree} where each branch assumes a given state-hypothesis. The control-tree optimization uses the probabilistic belief state information. This leads to policies more optimized with respect to likely states than unlikely ones, while still guaranteeing robust constraint satisfaction at all times. We apply the method to both linear and non-linear MPC with constraints. The optimization of the \textit{control-tree} is decomposed into optimization subproblems that are solved in parallel leading to good scalability for high number of state-hypotheses. We demonstrate the real-time feasibility of the algorithm on two examples and show the benefits compared to a classical MPC scheme optimizing w.r.t. one single hypothesis.
翻译:本文为部分观察到基本、离散变量的环境提供了一种新型模型预测控制方法。 在此假设下, 信仰状态是一定数量国家的概率分布。 我们优化了每个分支假设特定国家假设的 \ textit{ control- tree} 。 控制树优化使用了概率性信仰状态信息。 这导致对可能国家的政策比对不可能国家的政策更优化, 同时仍然保证始终保持强力约束性满意度。 我们对线性和非线性MPC 应用了这种方法,但有一定的制约。 \ textit{ control- tree} 的优化被分解为优化子问题, 平行解决了这些子问题, 导致大量州性假设的可扩展性。 我们用两个例子展示了算法的实时可行性, 并展示了与经典的MPC 计划相比, 优化 W.r. t. 单一假设的好处。