To represent anything from mathematical concepts to real-world objects, we have to resort to an encoding. Encodings, such as written language, usually assume a decoder that understands a rich shared code. A semantic embedding is a form of encoding that assumes a decoder with no knowledge, or little knowledge, beyond the basic rules of a mathematical formalism such as an algebra. Here we give a formal definition of a semantic embedding in a semilattice which can be used to resolve machine learning and classic computer science problems. Specifically, a semantic embedding of a problem is here an encoding of the problem as sentences in an algebraic theory that extends the theory of semilattices. We use the recently introduced formalism of finite atomized semilattices to study the properties of the embeddings and their finite models. For a problem embedded in a semilattice, we show that every solution has a model atomized by an irreducible subset of the non-redundant atoms of the freest model of the embedding. We give examples of semantic embeddings that can be used to find solutions for the N-Queen's completion, the Sudoku, and the Hamiltonian Path problems.
翻译:从数学概念到现实世界天体,我们不得不使用编码来代表任何从数学概念到真实世界天体的任何事物。 诸如书面语言等编码通常假定一个理解丰富共享代码的解码器。 语义嵌入是一种编码形式, 假设解码器除了数学形式化的基本规则( 如代数 ) 之外, 也没有任何知识, 或几乎没有知识。 我们在这里给出一个正式定义, 将语义嵌入到一个可以用来解决机器学习和经典计算机科学问题的半磁极中。 具体地说, 一个问题的语义嵌入在这里将问题编码成一个代数, 以扩展半白极理论的理论中的句子。 我们使用最近引入的限定的原子化半白板化的正统形式来研究嵌入的特性及其定型模型。 对于嵌入于半白极中的一个问题, 我们展示了每一个解决方案都有一个模型, 被一个不可忽略的、 不可忽略的、 最自由的原子模型的分解的分解的分解体组成。 我们举例说明了“ Q ”, 可以用来找到解决方案, 。