This paper investigates the quasi-maximum likelihood inference including estimation, model selection and diagnostic checking for linear double autoregressive (DAR) models, where all asymptotic properties are established under only fractional moment of the observed process. We propose a Gaussian quasi-maximum likelihood estimator (G-QMLE) and an exponential quasi-maximum likelihood estimator (E-QMLE) for the linear DAR model, and establish the consistency and asymptotic normality for both estimators. Based on the G-QMLE and E-QMLE, two Bayesian information criteria are proposed for model selection, and two mixed portmanteau tests are constructed to check the adequacy of fitted models. Moreover, we compare the proposed G-QMLE and E-QMLE with the existing doubly weighted quantile regression estimator in terms of the asymptotic efficiency and numerical performance. Simulation studies illustrate the finite-sample performance of the proposed inference tools, and a real example on the Bitcoin return series shows the usefulness of the proposed inference tools.
翻译:本文件调查了线性双反向(DAR)模型的准最大概率推断,包括估计、模型选择和诊断性检查,在此模型中,所有无症状特性都是在所观察到过程的微小时刻确定的。我们提议了高斯半最大概率估计器(G-QMLE)和线性DAR模型指数性准最大概率估计器(E-QMLE),并为两个估计器确定了一致性和无症状常性。根据G-QMLE和E-QMLE,提出了两个巴耶斯信息标准供模型选择,并设计了两个混合端口门测试,以检查适当模型是否合适。此外,我们将拟议的G-QMLE和E-QMLE与现有的双重加权二次回归估计器(E-QQMLE)与现有的超重临界回归率估计器(E-QMLE)与数字性能的指数性能进行比较。模拟研究说明了拟议参数工具的有限性能,并在Bitcoin返回序列上树立了一个实际例子,显示了拟议工具的效用。