In this paper we consider high-dimensional multiclass classification by sparse multinomial logistic regression. We propose first a feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the nonasymptotic bounds for misclassification excess risk of the resulting classifier. We establish also their tightness by deriving the corresponding minimax lower bounds. In particular, we show that there exist two regimes corresponding to small and large number of classes. The bounds can be reduced under the additional low noise condition. To find a penalized maximum likelihood solution with a complexity penalty requires, however, a combinatorial search over all possible models. To design a feature selection procedure computationally feasible for high-dimensional data, we propose multinomial logistic group Lasso and Slope classifiers and show that they also achieve the minimax order.


翻译:在本文中,我们考虑通过稀少的多等后勤回归进行高维多级分类。我们首先提议基于最易受处罚的特有选择程序,对模型尺寸进行复杂处罚,并得出对由此产生的分类师的分类错误过度风险的不防患未然的界限。我们还通过得出相应的微缩轴下限来确定其紧凑性。我们特别表明存在两种与小类和大类相对应的制度。在额外的低噪声条件下,限制范围可以缩小。然而,要找到最易受处罚的、最易受复杂处罚的解决方案,则需要对所有可能的模型进行组合搜索。为了设计高维数据在计算上可行的特有选择程序,我们建议采用多等后勤组Lasso和Slope分类师,并表明它们也达到了微缩轴。

0
下载
关闭预览

相关内容

多元逻辑回归模型的理论前提相对判别分析法要宽松得多,且没有关于分布类型、协方差阵等方面的严格假定。不过,在大量运用多元逻辑 回归的研究中往往忽视了另一个相当重要的问题,即模型自变量之间可能存在的多重共线性干扰。与其他多元回归方法一样,Logistic回归模型也对多元共线性敏感。当变量之间的相关程度提高时,系数估计的标准误将会急剧增加;同时,系数对样本和模型设置都非常敏感,模型设置的微小变化、在样本总体中加入或删除案例等变动,都会导致系数估计的较大变化。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
159+阅读 · 2020年1月16日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Arxiv
1+阅读 · 2021年1月6日
Arxiv
0+阅读 · 2021年1月5日
Arxiv
7+阅读 · 2019年6月20日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
7+阅读 · 2018年8月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
逻辑回归(Logistic Regression) 模型简介
全球人工智能
5+阅读 · 2017年11月1日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Logistic回归第一弹——二项Logistic Regression
机器学习深度学习实战原创交流
3+阅读 · 2015年10月22日
Top
微信扫码咨询专知VIP会员