This paper proposes the asymmetric linear double autoregression, which jointly models the conditional mean and conditional heteroscedasticity characterized by asymmetric effects. A sufficient condition is established for the existence of a strictly stationary solution. With a quasi-maximum likelihood estimation (QMLE) procedure introduced, a Bayesian information criterion (BIC) and its modified version are proposed for model selection. To detect asymmetric effects in the volatility, the Wald, Lagrange multiplier and quasi-likelihood ratio test statistics are put forward, and their limiting distributions are established under both null and local alternative hypotheses. Moreover, a mixed portmanteau test is constructed to check the adequacy of the fitted model. All asymptotic properties of inference tools including QMLE, BICs, asymmetric tests and the mixed portmanteau test, are established without any moment condition on the data process, which makes the new model and its inference tools applicable for heavy-tailed data. Simulation studies indicate that the proposed inference tools perform well in finite samples, and an empirical application to NASDAQ Composite Index illustrates the usefulness of the new model.
翻译:本文提议了不对称线性双向反向递增,它共同模拟了以不对称效应为特征的有条件平均和有条件的偏向性。已经为严格固定的解决方案的存在确定了充分的条件。在采用了准最大可能性估计(QMLE)程序后,提出了巴伊西亚信息标准(BIC)及其修改版本,供模式选择。为了检测波动中的不对称影响,提出了瓦尔德、拉格朗乘数和准类似比率测试统计数据,并在无效和当地替代假设下确定了其限制分布。此外,还建立了一个混合端口式测试,以检查装配模型是否合适。包括QMLE、BICs、不对称测试和混合端口式测试在内的推论工具的所有无药性属性性特征均在数据过程中确立,使新模型及其推论工具适用于重成型数据。模拟研究表明,拟议的推论工具在限定样品中运作良好,并对NASDAQ复合指数进行了实验性应用,说明新模型的效用。