Recently, we proposed a method to estimate parameters of stochastic dynamics based on the linear response statistics. The method rests upon a nonlinear least-squares problem that takes into account the response properties that stem from the Fluctuation-Dissipation Theory. In this article, we address an important issue that arises in the presence of model error. In particular, when the equilibrium density function is high dimensional and non-Gaussian, and in some cases, is unknown, the linear response statistics are inaccessible. We show that this issue can be resolved by fitting the imperfect model to appropriate marginal linear response statistics that can be approximated using the available data and parametric or nonparametric models. The effectiveness of the parameter estimation approach is demonstrated in the context of molecular dynamical models (Langevin dynamics) with a non-uniform temperature profile, where the modeling error is due to coarse-graining, and a PDE (non-Langevin dynamics) that exhibits spatiotemporal chaos, where the model error arises from a severe spectral truncation. In these examples, we show how the imperfect models, the Langevin equation with parameters estimated using the proposed scheme, can predict the nonlinear response statistics of the underlying dynamics under admissible external disturbances.


翻译:最近,我们根据线性响应统计提出了估算随机动态参数的方法。该方法基于一个非线性最小平方的问题,其中考虑到由模型错误产生的响应特性。在本条中,我们处理一个在模型错误出现时产生的重要问题。特别是当均衡密度功能是高维和非加西文时,有时是未知的,线性响应统计数据是无法获得的。我们表明,可以通过将不完善模型与适当的边际线性响应统计数据相匹配来解决这个问题,这些数据可以用现有数据和参数或非参数模型加以比较。参数估计方法的有效性在分子动态模型(Langevin动态)背景下得到证明,该模型错误是高维度和非加西文的,而PDE(非Langevin动态)则表明,由于模型错误是由严重光谱脱轨产生的模型错误,因此出现了波长性脉冲混乱。在这些例子中,我们展示了参数估算方法的有效性,即分子动态模型(Langevin)的模型(Langevilimical ) 和拟议不统一的外部动态模型下,我们用不精确的模型来估算。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
180+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员