This paper takes an initial step to systematically investigate the generalization bounds of algorithms for solving nonconvex-(strongly)-concave (NC-SC/NC-C) stochastic minimax optimization measured by the stationarity of primal functions. We first establish algorithm-agnostic generalization bounds via uniform convergence between the empirical minimax problem and the population minimax problem. The sample complexities for achieving $\epsilon$-generalization are $\tilde{\mathcal{O}}(d\kappa^2\epsilon^{-2})$ and $\tilde{\mathcal{O}}(d\epsilon^{-4})$ for NC-SC and NC-C settings, respectively, where $d$ is the dimension and $\kappa$ is the condition number. We further study the algorithm-dependent generalization bounds via stability arguments of algorithms. In particular, we introduce a novel stability notion for minimax problems and build a connection between generalization bounds and the stability notion. As a result, we establish algorithm-dependent generalization bounds for stochastic gradient descent ascent (SGDA) algorithm and the more general sampling-determined algorithms.
翻译:本文迈出了第一步,以便系统地调查用于解决非convex-(强力)conculve(NC-SC/NC-C) 和 $tilde_mathal{O ⁇ (d\\epsilon ⁇ -4}) 的算法的概括性界限。 我们首先通过实验微型货币问题与人口小型货币问题的统一融合来建立算法- 不可知性的一般化界限。 实现美元( epsilon) 通用的抽样复杂性是 $\ tilde_ mathcal{O} (d\\ SC/ NC- C) 和 $tilde_ mathal{O} (d\\ epsilon}) 和 NC 设置的 $ $ ent- C, 分别为 NC- SC 和 NC- C 设置, 其中美元为维度, 美元为维度, $\ kaptappa 。 我们进一步研究基于算法的通用概括化界限, 通过算法的参数参数来研究。 我们特别为最小化问题引入新的稳定概念概念的稳定概念概念,, 并在一般和稳定界限之间建立联系。结果, 我们为一般的GSG- 缩定一般- 缩定的GA 级的基级的基级的基级, 。