This paper takes an initial step to systematically investigate the generalization bounds of algorithms for solving nonconvex-(strongly)-concave (NC-SC/NC-C) stochastic minimax optimization measured by the stationarity of primal functions. We first establish algorithm-agnostic generalization bounds via uniform convergence between the empirical minimax problem and the population minimax problem. The sample complexities for achieving $\epsilon$-generalization are $\tilde{\mathcal{O}}(d\kappa^2\epsilon^{-2})$ and $\tilde{\mathcal{O}}(d\epsilon^{-4})$ for NC-SC and NC-C settings, respectively, where $d$ is the dimension and $\kappa$ is the condition number. We further study the algorithm-dependent generalization bounds via stability arguments of algorithms. In particular, we introduce a novel stability notion for minimax problems and build a connection between generalization bounds and the stability notion. As a result, we establish algorithm-dependent generalization bounds for stochastic gradient descent ascent (SGDA) algorithm and the more general sampling-determined algorithms.


翻译:本文迈出了第一步,以便系统地调查用于解决非convex-(强力)conculve(NC-SC/NC-C) 和 $tilde_mathal{O ⁇ (d\\epsilon ⁇ -4}) 的算法的概括性界限。 我们首先通过实验微型货币问题与人口小型货币问题的统一融合来建立算法- 不可知性的一般化界限。 实现美元( epsilon) 通用的抽样复杂性是 $\ tilde_ mathcal{O} (d\\ SC/ NC- C) 和 $tilde_ mathal{O} (d\\ epsilon}) 和 NC 设置的 $ $ ent- C, 分别为 NC- SC 和 NC- C 设置, 其中美元为维度, 美元为维度, $\ kaptappa 。 我们进一步研究基于算法的通用概括化界限, 通过算法的参数参数来研究。 我们特别为最小化问题引入新的稳定概念概念的稳定概念概念,, 并在一般和稳定界限之间建立联系。结果, 我们为一般的GSG- 缩定一般- 缩定的GA 级的基级的基级的基级, 。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员