Given a graph $G$, a query node $q$, and an integer $k$, community search (CS) seeks a cohesive subgraph (measured by community models such as $k$-core or $k$-truss) from $G$ that contains $q$. It is difficult for ordinary users with less knowledge of graphs' complexity to set an appropriate $k$. Even if we define quite a large $k$, the community size returned by CS is often too large for users to gain much insight about it. Compared against the entire community, key-members in the community appear more valuable than others. To contend with this, we focus on a new problem, that is \textbf{C}ommunity \textbf{K}ey-members \textbf{S}earch problem (CKS). We turn our perspective to the key-members in the community containing $q$ instead of the entire community. To solve CKS problem, we first propose an exact algorithm based on truss decomposition as the baseline. Then, we present four random walk-based optimized algorithms to achieve a trade-off between effectiveness and efficiency, by carefully considering some important cohesiveness features in the design of transition matrix. We return the top-$n$ key-members according to the stationary distribution when random walk converges. Moreover, we propose a lightweight refinement method following an "expand-replace" manner to further optimize the top-$n$ result with little overhead, and we extend our solution to support CKS with multiple query nodes. We also analyze our solution's effectiveness theoretically. Comprehensive experimental studies on various real-world datasets demonstrate our method's superiority.


翻译:根据一张G$G的图表,一个查询节点美元和一个整金美元,社区搜索(CS)从包含$q$的G$中寻找一个具有凝聚力的子集(用社区模型衡量,如美元-核心或美元-rues等社区模型衡量),它包含$q美元。对于对图形复杂性了解较少的普通用户来说,很难设定一个适当的K美元。即使我们定义了相当大的美元,CS返回的社区规模往往太大,用户无法深入了解。与整个社区相比,社区的关键成员似乎比其他社区更有价值。为此,我们专注于一个新的问题,即:textbf{C}omunity\ textbf{K}ey-members\ textbf{S}earch 问题。我们把观点转向社区中含有$quoality的的关键成员。为了解决CKS问题,我们首先提出基于tus decomplace的精确算法,作为基线。然后,我们展示了四个随机的Sload-rental-ralalalalalalalalalalal exaltial deal deal ex restialtial deal deal deal deal demo max maxism lautus lax lax lax lax lax lax lax lax lax laut ro ro max routus lautus laus lax max lautus max max lautd max lautus max max max max max max max max max max max max max max max max max max max max max max mas max max max max max max max max max max max 一种我们以我们以我们通过一个非常有效的最精度的精制的精度的精度方法,我们最精制的精度的精度算算算。我们最精度方法,我们最精度方法,我们最精度的

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月24日
Arxiv
0+阅读 · 2023年2月22日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员