This work initiates the systematic study of explicit distributions that are indistinguishable from a single exponential-size combinatorial object. In this we extend the work of Goldreich, Goldwasser and Nussboim (SICOMP 2010) that focused on the implementation of huge objects that are indistinguishable from the uniform distribution, satisfying some global properties (which they coined truthfulness). Indistinguishability from a single object is motivated by the study of generative models in learning theory and regularity lemmas in graph theory. Problems that are well understood in the setting of pseudorandomness present significant challenges and at times are impossible when considering generative models of huge objects. We demonstrate the versatility of this study by providing a learning algorithm for huge indistinguishable objects in several natural settings including: dense functions and graphs with a truthfulness requirement on the number of ones in the function or edges in the graphs, and a version of the weak regularity lemma for sparse graphs that satisfy some global properties. These and other results generalize basic pseudorandom objects as well as notions introduced in algorithmic fairness. The results rely on notions and techniques from a variety of areas including learning theory, complexity theory, cryptography, and game theory.
翻译:这项工作启动了对与单一指数大小组合对象无法区分的清晰分布的系统研究。 在此我们扩展了Goldreich、Goldwasser和Nussboim(SICOMP 2010)的工作,其重点是实施与统一分布无法区分的巨大天体,满足了某些全球特性(这些天体创造了真实性)。与单个天体的不可区分性,其动机是研究学习理论中的基因化模型和图形理论中规律性利玛理论中的规律性利玛的规律性。在设置假冒性时所熟知的问题提出了重大挑战,在考虑巨型的基因化模型时,有时是不可能的。我们展示了这项研究的多功能性,为若干自然环境中无法区分的巨大天体提供了学习算法,这些天体提供了一种巨大的不可区分天体的天体,这些天体符合某些自然环境的特性,包括:在图形的功能或边缘中要求真实性的密集函数和图表,以及满足某些全球特性的稀有性图的不固定性利玛的版本。这些以及其他结果使得基本假体物体普遍化,作为理论领域的概念,包括演算法学和理论的多样化,结果。</s>