Emotions are crucial in human life, influencing perceptions, relationships, behaviour, and choices. Emotion recognition using Electroencephalography (EEG) in the Brain-Computer Interface (BCI) domain presents significant challenges, particularly the need for extensive datasets. This study aims to generate synthetic EEG samples that are similar to real samples but are distinct by augmenting noise to a conditional denoising diffusion probabilistic model, thus addressing the prevalent issue of data scarcity in EEG research. The proposed method is tested on the DEAP dataset, showcasing a 1.94% improvement in classification performance when using synthetic data. This is higher compared to the traditional GAN-based and DDPM-based approaches. The proposed diffusion-based approach for EEG data generation appears promising in refining the accuracy of emotion recognition systems and marks a notable contribution to EEG-based emotion recognition. Our research further evaluates the effectiveness of state-of-the-art classifiers on EEG data, employing both real and synthetic data with varying noise levels.
翻译:暂无翻译