In this series of works, we develop a discrete-velocity-direction model (DVDM) with collisions of BGK-type for simulating rarefied flows. Unlike the conventional kinetic models (both BGK and discrete-velocity models), the new model restricts the transport to finite fixed directions but leaves the transport speed to be a 1-D continuous variable. Analogous to the BGK equation, the discrete equilibriums of the model are determined by minimizing a discrete entropy. In this first paper, we introduce the DVDM and investigate its basic properties, including the existence of the discrete equilibriums and the $H$-theorem. We also show that the discrete equilibriums can be efficiently obtained by solving a convex optimization problem. The proposed model provides a new way in choosing discrete velocities for the computational practice of the conventional discrete-velocity methodology. It also facilitates a convenient multidimensional extension of the extended quadrature method of moments. We validate the model with numerical experiments for two benchmark problems at moderate computational costs.
翻译:在这一系列工程中,我们开发了一种离散速度方向模型(DVDM),与BGK型相撞的离散速度方向模型(DVDM),用于模拟稀有水流。与传统的动能模型(BGK和离散速度模型)不同,新模型将运输限制在有限的固定方向,但将运输速度保留为1-D连续变量。对BGK方程式的模拟,该模型的离散速度平衡是通过尽量减少离散孔径来决定的。在本文第一份文件中,我们引入DVDM,并调查其基本特性,包括离散平衡和$H$-theram的存在。我们还表明,离散平衡可以通过解决锥体优化问题来有效获得。拟议的模型为选择离散速度方法的计算做法提供了一种新的方式。它也便利了扩展瞬间阶梯法的多维度扩展。我们用数字实验来验证该模型在适度计算成本时的两个基准问题。