This article improves on existing methods to estimate the spectral density of stationary and nonstationary time series assuming a Gaussian process prior. By optimising an appropriate eigendecomposition using a smoothing spline covariance structure, our method more appropriately models both smooth and rough data. We further justify the utility of this optimal eigendecomposition by investigating the performance of alternative covariance functions other than smoothing splines. We show that the optimal eigendecomposition provides a material improvement, while the other covariance functions under examination do not, all performing comparatively well as the smoothing spline. During our computational investigation, we introduce new validation metrics for the spectral density estimate, inspired from the physical sciences. We validate our models in an extensive simulation study and demonstrate superior performance with real data.
翻译:本条改进了现有方法,以估计假定在Gaussian 进程之前的固定和非静止时间序列的光谱密度。 通过优化使用平滑的样板共变结构进行的适当微分变形,我们的方法更适宜于光滑和粗略的数据模型。我们进一步证明这种最佳微分变形的有用性,方法是调查除平滑的样条之外的替代共变函数的性能。我们表明,最佳微分变形提供了物质改进,而正在审查的其他共变函数则没有,所有功能都相对和平稳的样条。在我们进行计算调查期间,我们引入了来自物理科学的光谱密度估计的新的验证指标。我们在广泛的模拟研究中验证了我们的模型,并用真实数据展示了优异的性能。