We consider the estimation of the global mode of a density under some decay rate condition around the global mode. We show that the maximum of a histogram, with proper choice of bandwidth, achieves the minimax rate that we establish for the setting that we consider. This is based on knowledge of the decay rate. Addressing the situation where the decay rate is unknown, we propose a multiscale variant consisting in the recursive refinement of a histogram, which is shown to be minimax adaptive. These methods run in linear time, and we prove in an appendix that this is best possible: There is no estimation procedure that runs in sublinear time that achieves the minimax rate.
翻译:我们考虑在全球模式周围某些衰变率条件下对密度的全球模式的估计。 我们显示,直方图的最大值,只要适当选择带宽,就能达到我们为所考虑的环境确定的微缩速率。 这是基于对衰变率的了解。 处理尚不清楚的衰变率的情况, 我们提出一个多尺度的变体, 包括直方图的递归性改进, 显示其具有微缩的适应性。 这些方法在线性时间运行, 我们在附录中证明这是最好的办法: 没有在亚线性时间运行的估算程序可以达到微缩速率。