Large spatiotemporal datasets are a challenge for conventional Bayesian models because of the cubic computational complexity of the algorithms for obtaining the Cholesky decomposition of the covariance matrix in the multivariate normal density. Moreover, standard numerical algorithms for posterior estimation, such as Markov Chain Monte Carlo (MCMC), are intractable in this context, as they require thousands, if not millions, of costly likelihood evaluations. To overcome those limitations, we propose IS-MRA (Importance sampling - Multi-Resolution Approximation), which takes advantage of the sparse inverse covariance structure produced by the Multi-Resolution Approximation (MRA) approach. IS-MRA is fully Bayesian and facilitates the approximation of the hyperparameter marginal posterior distributions. We apply IS-MRA to large MODIS Level 3 Land Surface Temperature (LST) datasets, sampled between May 18 and May 31, 2012 in the western part of the state of Maharashtra, India. We find that IS-MRA can produce realistic prediction surfaces over regions where concentrated missingness, caused by sizable cloud cover, is observed. Through a validation analysis and simulation study, we also find that predictions tend to be very accurate.


翻译:对传统的贝叶斯模型来说,大型时空数据集是一个挑战,因为要获得多变正常密度中共变矩阵的Chalesky分解,算法的分解十分复杂,因此对传统的贝叶斯模型来说,巨大的时空数据集是一大挑战,此外,关于后天估计的标准数字算法,如Markov Cain Cain Cont Monte Carlo(MCMC),在这方面很难使用,因为它们需要数千甚至数百万次昂贵的概率评估。为了克服这些限制,我们提议采用IS-MRA(进口取样-多分辨率吸附),利用多分辨率吸附法(MRA)方法产生的零散反逆变量结构。IS-MRA(IS-MRA)完全属于Bayesian,便于超光谱边边边边远分布的接近。我们将IS-MRA(IMRA)应用于2012年5月18日至5月31日在印度马哈拉施特拉州西部取样。我们发现,IS-MRA(I-MRA)可以产生现实的预测表层表面,通过可观测到的云层的模拟分析,我们也会发现。

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年6月3日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【快讯】CVPR2020结果出炉,1470篇上榜, 你的paper中了吗?
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员