We propose a model-free framework for sensitivity analysis of individual treatment effects (ITEs), building upon ideas from conformal inference. For any unit, our procedure reports the $\Gamma$-value, a number which quantifies the minimum strength of confounding needed to explain away the evidence for ITE. Our approach rests on the reliable predictive inference of counterfactuals and ITEs in situations where the training data is confounded. Under the marginal sensitivity model of Tan (2006), we characterize the shift between the distribution of the observations and that of the counterfactuals. We first develop a general method for predictive inference of test samples from a shifted distribution; we then leverage this to construct covariate-dependent prediction sets for counterfactuals. No matter the value of the shift, these prediction sets (resp. approximately) achieve marginal coverage if the propensity score is known exactly (resp. estimated). We describe a distinct procedure also attaining coverage, however, conditional on the training data. In the latter case, we prove a sharpness result showing that for certain classes of prediction problems, the prediction intervals cannot possibly be tightened. We verify the validity and performance of the new methods via simulation studies and apply them to analyze real datasets.


翻译:我们建议了一个无模型的框架,用于对个别治疗效果进行敏感性分析,这一框架以来自一致推断的理念为基础。对于任何单位,我们的程序都报告美元-价值,这个数值量化了解释技术试验的证据所需的折合性最低强度。我们的方法是在培训数据确凿的情况下对反事实和ITE进行可靠的预测性推断。根据Tan的边际敏感性模型(2006年),我们描述观测分布和反事实分布之间的变化。我们首先为测试样品从变化分布的预测性推断制定了一种一般方法;然后我们利用这个方法来为反事实构建基于共变的预测数据集。不管这种变化的价值如何,这些预测组(大致上)在准确知道性分数的情况下达到边际覆盖。我们描述了一种独特的程序,但以培训数据为条件。在后一种情况下,我们证明一种精确性的结果表明,对于某些类别的预测问题,预测间隔期不可能通过模拟来进行新的分析。我们核查数据的有效性和模拟方法。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Optimal transport weights for causal inference
Arxiv
0+阅读 · 2022年1月27日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关资讯
CCF推荐 | 国际会议信息10条
Call4Papers
7+阅读 · 2019年5月27日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员