Our motivation stems from current medical research aiming at personalized treatment using a molecular-based approach. The broad goal is to develop a more precise and targeted decision making process, relative to traditional treatments based primarily on clinical diagnoses. Specifically, we consider patients affected by Acute Myeloid Leukemia (AML), an hematological cancer characterized by uncontrolled proliferation of hematopoietic stem cells in the bone marrow. Because AML responds poorly to chemoterapeutic treatments, the development of targeted therapies is essential to improve patients' prospects. In particular, the dataset we analyze contains the levels of proteins involved in cell cycle regulation and linked to the progression of the disease. We analyse treatment effects within a causal framework represented by a Directed Acyclic Graph (DAG) model, whose vertices are the protein levels in the network. A major obstacle in implementing the above program is however represented by individual heterogeneity. We address this issue through a Dirichlet Process (DP) mixture of Gaussian DAG-models where both the graphical structure as well as the allied model parameters are regarded as uncertain. Our procedure determines a clustering structure of the units reflecting the underlying heterogeneity, and produces subject-specific estimates of causal effects based on Bayesian model averaging. With reference to the AML dataset, we identify different effects of protein regulation among individuals; moreover, our method clusters patients into groups that exhibit only mild similarities with traditional categories based on morphological features.
翻译:我们的动机来自目前医学研究,目的是利用分子法进行个性化治疗,其广泛目标是发展一个更精确和有针对性的决策过程,相对于主要以临床诊断为基础的传统治疗。具体地说,我们认为,受急性流状白血病(AML)影响的病人,这种急性流状白血病(AML)是一种血液癌,其特点是骨髓中肝脏干细胞的无节制扩散。由于AML对化学治疗反应不力,因此制定有针对性的疗法对于改善病人的传统前景至关重要。我们分析的数据集包含细胞循环调节所涉蛋白质的水平,并与疾病的演变相联系。我们分析的数据集包含与细胞循环调节有关并与疾病演变相联系的特征相联系。我们在以直接循环图模型(DAGAG)为代表的因果框架内分析治疗效果,其脊椎是网络中的蛋白质水平。实施上述方案的主要障碍是个体的异质性。我们通过一个“温度进程”(DP)混合Gaussian DAG-AG模型来解决这个问题。我们分析的数据集以及相关模型参数的类别。我们的程序根据“方向图”模型分析结果,将一个基于“标准”的分类结构结构结构结构结构,将一个基于“BAGLAG”的模型分析结果的模型分析结果结构结构结构结构结构结构,将一个基于“BA.BAGUCFC 确定一个基础的模型结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构结构的模型的模型的模型的模型的模型,其结构结构结构结构结构结构结构结构的模型的模型的模型的模型,根据我们根据我们根据一个基础,以“BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB的模型的模型的模型的模型的模型的模型,其基础的模型的模型,将一个模型,其基础的模型的模型的模型分析结果的模型的模型分析结果的模型分析结果的模型的模型的模型的模型的模型的模型分析结果的模型分析结果,其为BBBB。