Let $\left\{ \mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ be an infinite sequence of families of compact connected sets in $\mathbb{R}^{d}$. An infinite sequence of compact connected sets $\left\{ B_{n} \right\}_{n\in \mathbb{N}}$ is called heterochromatic sequence from $\left\{ \mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ if there exists an infinite sequence $\left\{ i_{n} \right\}_{n\in \mathbb{N}}$ of natural numbers satisfying the following two properties: (a) $\{i_{n}\}_{n\in \mathbb{N}}$ is a monotonically increasing sequence, and (b) for all $n \in \mathbb{N}$, we have $B_{n} \in \mathcal{F}_{i_n}$. We show that if every heterochromatic sequence from $\left\{ \mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ contains $d+1$ sets that can be pierced by a single hyperplane then there exists a finite collection $\mathcal{H}$ of hyperplanes from $\mathbb{R}^{d}$ that pierces all but finitely many families from $\left\{ \mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$. As a direct consequence of our result, we get that if every countable subcollection from an infinite family $\mathcal{F}$ of compact connected sets in $\mathbb{R}^{d}$ contains $d+1$ sets that can be pierced by a single hyperplane then $\mathcal{F}$ can be pierced by finitely many hyperplanes. To establish the optimality of our result we show that, for all $d \in \mathbb{N}$, there exists an infinite sequence $\left\{ \mathcal{F}_{n}\right\}_{n \in \mathbb{N}}$ of families of compact connected sets satisfying the following two conditions: (1) for all $n \in \mathbb{N}$, $\mathcal{F}_{n}$ is not pierceable by finitely many hyperplanes, and (2) for any $m \in \mathbb{N}$ and every sequence $\left\{B_n\right\}_{n=m}^{\infty}$ of compact connected sets in $\mathbb{R}^d$, where $B_i\in\mathcal{F}_i$ for all $i \geq m$, there exists a hyperplane in $\mathbb{R}^d$ that pierces at least $d+1$ sets in the sequence.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 3月26日
Arxiv
0+阅读 · 3月25日
Arxiv
0+阅读 · 3月22日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员