In this paper we consider the problem of estimating the $f$-moment ($\sum_{v\in [n]} (f(\mathbf{x}(v))-f(0))$) of a dynamic vector $\mathbf{x}\in \mathbb{G}^n$ over some abelian group $(\mathbb{G},+)$, where the $\|f\|_\infty$ norm is bounded. We propose a simple sketch and new estimation framework based on the \emph{Fourier transform} of $f$. I.e., we decompose $f$ into a linear combination of homomorphisms $f_1,f_2,\ldots$ from $(\mathbb{G},+)$ to $(\mathbb{C},\times)$, estimate the $f_k$-moment for each $f_k$, and synthesize them to obtain an estimate of the $f$-moment. Our estimators are asymptotically unbiased and have variance asymptotic to $\|\mathbf{x}\|_0^2 (\|f\|_\infty^2 m^{-1} + \|\hat{f}\|_1^2 m^{-2})$, where the size of the sketch is $O(m\log n\log|\mathbb{G}|)$ bits. When $\mathbb{G}=\mathbb{Z}$ this problem can also be solved using off-the-shelf $\ell_0$-samplers with space $O(m\log^2 n)$ bits, which does not obviously generalize to finite groups. As a concrete benchmark, we extend Ganguly, Garofalakis, and Rastogi's singleton-detector-based sampler to work over $\mathbb{G}$ using $O(m\log n\log|\mathbb{G}|\log(m\log n))$ bits. We give some experimental evidence that the Fourier-based estimation framework is significantly more accurate than sampling-based approaches at the same memory footprint.
翻译:暂无翻译