A $(1+\varepsilon)\textit{-stretch tree cover}$ of a metric space is a collection of trees, where every pair of points has a $(1+\varepsilon)$-stretch path in one of the trees. The celebrated $\textit{Dumbbell Theorem}$ [Arya et~al. STOC'95] states that any set of $n$ points in $d$-dimensional Euclidean space admits a $(1+\varepsilon)$-stretch tree cover with $O_d(\varepsilon^{-d} \cdot \log(1/\varepsilon))$ trees, where the $O_d$ notation suppresses terms that depend solely on the dimension~$d$. The running time of their construction is $O_d(n \log n \cdot \frac{\log(1/\varepsilon)}{\varepsilon^{d}} + n \cdot \varepsilon^{-2d})$. Since the same point may occur in multiple levels of the tree, the $\textit{maximum degree}$ of a point in the tree cover may be as large as $\Omega(\log \Phi)$, where $\Phi$ is the aspect ratio of the input point set. In this work we present a $(1+\varepsilon)$-stretch tree cover with $O_d(\varepsilon^{-d+1} \cdot \log(1/\varepsilon))$ trees, which is optimal (up to the $\log(1/\varepsilon)$ factor). Moreover, the maximum degree of points in any tree is an $\textit{absolute constant}$ for any $d$. As a direct corollary, we obtain an optimal {routing scheme} in low-dimensional Euclidean spaces. We also present a $(1+\varepsilon)$-stretch $\textit{Steiner}$ tree cover (that may use Steiner points) with $O_d(\varepsilon^{(-d+1)/{2}} \cdot \log(1/\varepsilon))$ trees, which too is optimal. The running time of our two constructions is linear in the number of edges in the respective tree covers, ignoring an additive $O_d(n \log n)$ term; this improves over the running time underlying the Dumbbell Theorem.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年5月9日
Arxiv
0+阅读 · 2024年5月9日
Arxiv
0+阅读 · 2024年5月9日
Arxiv
0+阅读 · 2024年5月8日
Online List Labeling with Near-Logarithmic Writes
Arxiv
0+阅读 · 2024年5月7日
Arxiv
0+阅读 · 2024年5月6日
Arxiv
1+阅读 · 2024年5月5日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2024年5月9日
Arxiv
0+阅读 · 2024年5月9日
Arxiv
0+阅读 · 2024年5月9日
Arxiv
0+阅读 · 2024年5月8日
Online List Labeling with Near-Logarithmic Writes
Arxiv
0+阅读 · 2024年5月7日
Arxiv
0+阅读 · 2024年5月6日
Arxiv
1+阅读 · 2024年5月5日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员