A key challenge in Imitation Learning (IL) is that optimal state actions demonstrations are difficult for the teacher to provide. For example in robotics, providing kinesthetic demonstrations on a robotic manipulator requires the teacher to control multiple degrees of freedom at once. The difficulty of requiring optimal state action demonstrations limits the space of problems where the teacher can provide quality feedback. As an alternative to state action demonstrations, the teacher can provide corrective feedback such as their preferences or rewards. Prior work has created algorithms designed to learn from specific types of noisy feedback, but across teachers and tasks different forms of feedback may be required. Instead we propose that in order to learn from a diversity of scenarios we need to learn from a variety of feedback. To learn from a variety of feedback we make the following insight: the teacher's cost function is latent and we can model a stream of feedback as a stream of loss functions. We then use any online learning algorithm to minimize the sum of these losses. With this insight we can learn from a diversity of feedback that is weakly correlated with the teacher's true cost function. We unify prior work into a general corrective feedback meta-algorithm and show that regardless of feedback we can obtain the same regret bounds. We demonstrate our approach by learning to perform a household navigation task on a robotic racecar platform. Our results show that our approach can learn quickly from a variety of noisy feedback.


翻译:模拟学习(IL)中的一个关键挑战是,教师很难提供最佳状态行动演示。例如,在机器人中,提供机器人操纵器的动画演示要求教师同时控制多种程度的自由。要求优化状态行动演示的困难限制了教师提供高质量反馈的问题空间。作为州行动演示的替代办法,教师可以提供纠正性反馈,如他们的偏好或奖励。先前的工作创造了各种算法,旨在从特定类型的噪音反馈中学习,但可能需要在教师和不同形式的反馈中学习。相反,我们提议,为了从多种情景中学习我们需要从各种反馈中学习的动画演示,教师需要同时控制多种程度的自由。为了从各种反馈中学习各种反馈:教师的成本功能是潜在的,我们可以将一系列反馈作为损失功能的流来模拟。我们随后使用任何在线学习算法来尽量减少这些损失的总和。我们可以从与教师的真正成本功能关系不大的多种反馈中学习。我们把先前的工作整合为一般的纠正性反馈,需要从各种反馈中学习各种反馈。我们要从以下的洞见:教师的成本功能是潜在的,我们可以用一种学习我们家动式的动力学习方法。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
24+阅读 · 2021年1月25日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Multi-task Deep Reinforcement Learning with PopArt
Arxiv
4+阅读 · 2018年9月12日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员