This document introduces a hypothesized framework on the functional nature of primitive neural network. It discusses such an idea that the activity of neurons and synapses can symbolically reenact the dynamic changes in the world and enable an adaptive system of behavior. More specifically, the network achieves these without participating in an algorithmic structure. When a neuron's activation represents some symbolic element in the environment, each of its synapses can indicate a potential change to the element and its future state. The efficacy of a synaptic connection further specifies the element's particular probability for, or contribution to, such a change. A neuron's activation is transformed to its postsynaptic targets as it fires, resulting in a chronological shift of the represented elements. As the inherent function of summation in a neuron integrates the various presynaptic contributions, the neural network mimics the collective causal relationship of events in the observed environment.
翻译:本文件引入了原始神经网络功能性质的假设框架。 它讨论了神经元和突触的活动可以象征性地重新激活世界上的动态变化并促成适应性的行为系统。 更具体地说, 网络在不参与算法结构的情况下实现了这些变化。 当神经元的激活代表了环境中的某些象征要素时, 神经元的每个突触都能够显示元素及其未来状态的潜在变化。 合成连接的功效进一步明确了该元素在这种变化中的特殊概率或作用。 神经元的激活在燃烧时会转化为其后发性目标, 导致代表元素的按时间顺序变化。 神经元的合成的固有功能将各种预合成贡献整合在一起, 神经网络将观察环境中的事件的集体因果关系进行模拟。