We consider two algorithmic problems concerning sub-semigroups of Heisenberg groups and, more generally, two-step nilpotent groups. The first problem is Intersection Emptiness, which asks whether a finite number of given finitely generated semigroups have empty intersection. This problem was first studied by Markov in the 1940s. We show that Intersection Emptiness is PTIME decidable in the Heisenberg groups $\operatorname{H}_{n}(\mathbb{K})$ over any algebraic number field $\mathbb{K}$, as well as in direct products of Heisenberg groups. We also extend our decidability result to arbitrary finitely generated 2-step nilpotent groups. The second problem is Orbit Intersection, which asks whether the orbits of two matrices under multiplication by two semigroups intersect with each other. This problem was first studied by Babai et al. (1996), who showed its decidability within commutative matrix groups. We show that Orbit Intersection is decidable within the Heisenberg group $\operatorname{H}_{3}(\mathbb{Q})$.
翻译:我们考虑的是海森堡集团小群体和一般而言两步零能力集团的亚群体的两个算法问题。 第一个问题就是交会圈, 询问有限数目的有限生成的半群体是否有空交叉点。 这个问题最初由Markov在1940年代研究过。 我们显示, 海森堡集团中, 交叉渗透是PTIME 分解的 $\ operatorname{H ⁇ n} (\mathbb{K}}})$ 相对于任何代数字段$\ mathbb{K}$, 以及海森堡集团的直接产品。 我们还将我们的衰落结果扩展至任意的有限生成的2步零能力集团。 第二个问题是轨道交叉点, 询问两个半组相互交叉作用的两个矩阵的轨道。 这个问题首先由Babai 和 al (1996年) 研究过, 他们在交会组中显示出其变异性。 我们显示, 轨道交叉点可以在 Heisenberg Group $\\\ operatorname{H}} {H} 3} 。