We introduce $\varepsilon$-projectors, using which we can sample from limiting distributions of continuous-time quantum walks. The standard algorithm for sampling from a distribution that is close to the limiting distribution of a given quantum walk is to run the quantum walk for a time chosen uniformly at random from a large interval, and measure the resulting quantum state. This approach usually results in an exponential running time. We show that, using $\varepsilon$-projectors, we can sample exactly from the limiting distribution. In the black-box setting, where we only have query access to the adjacency matrix of the graph, our sampling algorithm runs in time proportional to $\Delta^{-1}$, where $\Delta$ is the minimum spacing between the distinct eigenvalues of the graph. In the non-black-box setting, we give examples of graphs for which our algorithm runs exponentially faster than the standard sampling algorithm.
翻译:我们引入了 $\ varepsilon$- projectors, 我们可以使用它从限制连续时间量流量的分布中取样。 从接近于限制量流量流量分布的分布中取样的标准算法是运行量子漫步, 在一个从大间隔中平均随机选择的时间里运行量子漫步, 并测量所产生的量子状态。 这种方法通常导致指数运行时间。 我们用 $\ varepsilon$- projectors, 我们可以从限制分布中取样。 在黑盒设置中, 我们只能查询图形的相邻矩阵, 我们的取样算法在时间比例上是 $\ Delta ⁇ -1} $, 其中$\ Delta$是图形不同电子元值之间的最小间距 。 在非黑盒设置中, 我们举一些图表的例子, 我们的算法比标准抽样算法速度更快。