Neural radiance fields (NeRF) excel at synthesizing new views given multi-view, calibrated images of a static scene. When scenes include distractors, which are not persistent during image capture (moving objects, lighting variations, shadows), artifacts appear as view-dependent effects or 'floaters'. To cope with distractors, we advocate a form of robust estimation for NeRF training, modeling distractors in training data as outliers of an optimization problem. Our method successfully removes outliers from a scene and improves upon our baselines, on synthetic and real-world scenes. Our technique is simple to incorporate in modern NeRF frameworks, with few hyper-parameters. It does not assume a priori knowledge of the types of distractors, and is instead focused on the optimization problem rather than pre-processing or modeling transient objects. More results on our page https://robustnerf.github.io/public.
翻译:神经亮度场( NeRF) 擅长对静态场景的多视图、校准图像中的新观点进行合成。 当场景包括分散器( 在图像捕捉( 移动对象、 照明变异、 阴影) 期间不耐久的分散器), 人工制品作为视光效应或“ 浮标” 出现。 为了应对分散器, 我们提倡一种对 NeRF 培训进行强力估计的形式, 将分散器作为优化问题外端数据的培训数据模型。 我们的方法成功地从场景中清除了外源, 并改进了我们的基线、 合成和现实世界的场景。 我们的技术简单易被纳入现代的 NeRF 框架, 少有超参数。 它不假定对分散器的类型有先验的知识, 而是侧重于优化问题, 而不是预处理或模拟瞬态物体。 我们网页 https://robustnerf. github.io/publical 上的更多结果 。