Extremely large-scale arrays (XL-arrays) have emerged as a promising technology for enabling near-field communications in future wireless systems. However, the huge number of antennas pose demanding challenges on the hardware cost and energy consumption, especially when the antennas employ high-resolution phase shifters (PSs). To address this issue, in this paper, we consider discrete PSs at the XL-array which are practically more energy efficient, and investigate the impact of PS resolution on the near-field beam-focusing effect. To this end, we propose a new Fourier series expansion method to efficiently tackle the difficulty in characterising the beam pattern properties under phase quantization. Interestingly, we analytically show, for the first time, that 1) discrete PSs introduce additional grating lobes; 2) the main lobe still exhibits the beam-focusing effect with its beam power increasing with PS resolution; and 3) there are two types of grating lobes, featured by the beam-focusing and beam-steering effects, respectively. Finally, numerical results demonstrate that the grating lobes generally degrade the communication performance. However, a low-resolution of 3-bit PSs can achieve similar beam pattern and rate performance with the continuous PS counterpart, while it attains much higher energy efficiency.
翻译:暂无翻译