This article proposes a spatiotemporal point process model that enhances the classical Epidemic-Type Aftershock Sequence (ETAS) model by incorporating a renewal main-shock arrival process, which we term the renewal ETAS (RETAS) model. This modification is similar in spirit to the renewal Hawkes (RHawkes) process but the conditional intensity process supports a spatial domain. It empowers the main-shock intensity with the capability to reset upon the arrival of main-shocks and therefore allows for heavier clustering of earthquakes than the spatiotemporal ETAS model introduced by Ogata (1998). We introduce a likelihood evaluation algorithm for parameter estimation and provide a novel procedure to evaluated the fitted model's goodness-of-fit based on a sequential application of the Rosenblatt transformation. A simulation algorithm for the RETAS model is developed and applied to validate the numerical performance of the likelihood evaluation algorithm and goodness of fit test procedure. We illustrate the proposed model and procedures on various earthquake catalogs around the world each with distinctly different seismic activity. These catalogs will demonstrate that the RETAS model affords additional flexibility in comparison to the classical spatiotemporal ETAS model and has the potential for superior modeling and forecasting of seismicity.
翻译:本条提出一个超广时点过程模型,通过纳入更新主要震后震后序列(ETAS)模型,加强古典流行-创伤后震后震后序列(ETAS)模型,我们称之为更新主要震后到达过程(ETAS)模型,这种修改与Hawkes(RHAWawkes)更新过程(RHAWawkes)过程的精神相似,但条件强度过程支持空间域。它赋予主震强度,使其有能力在主要冲击到达时重置,从而能够比绪方(1998年)引进的随机震后震后序列模型(ETAS)模型(ETAS)模型)更密集地组合地震。我们引入了参数估计的可能性评估算法,并为根据罗森布拉特转换的连续应用来评价适合模型的优异性提供了新的程序。为RETAS模型开发并应用了模拟算法,以验证可能的评估算法和适当测试程序的质量。我们介绍了世界各地各种地震目录中每个不同地震活动的拟议模型和程序。这些目录将证明,在将地震预测和地震预报方面模型具有更大的灵活性,以便比较。