The data consistency for the physical forward model is crucial in inverse problems, especially in MR imaging reconstruction. The standard way is to unroll an iterative algorithm into a neural network with a forward model embedded. The forward model always changes in clinical practice, so the learning component's entanglement with the forward model makes the reconstruction hard to generalize. The proposed method is more generalizable for different MR acquisition settings by separating the forward model from the deep learning component. The deep learning-based proximal gradient descent was proposed to create a learned regularization term independent of the forward model. We applied the one-time trained regularization term to different MR acquisition settings to validate the proposed method and compared the reconstruction with the commonly used $\ell_1$ regularization. We showed ~3 dB improvement in the peak signal to noise ratio, compared with conventional $\ell_1$ regularized reconstruction. We demonstrated the flexibility of the proposed method in choosing different undersampling patterns. We also evaluated the effect of parameter tuning for the deep learning regularization.
翻译:物理前方模型的数据一致性在反向问题中至关重要,特别是在MR成像重建中。 标准的方法是将迭代算法解入神经网络,并嵌入前方模型。 前方模型总是改变临床实践,因此学习部分与前方模型的纠缠使得重建难以概括。 拟议的方法通过将前方模型与深深层学习部分分开,对不同的MR获取设置更为普遍。 深层学习基础的准偏差下降建议创建一个独立于前方模型的学习正规化术语。 我们将经过一次性培训的MR获取术语应用于不同的神经网络,以验证拟议方法,并将重建与通常使用的$\ell_1美元正规化方法进行比较。 与常规的$\ell_1美元正规化重建相比,我们显示了峰值信号对噪音比率的改善。 我们展示了拟议方法在选择不同下方抽样模式方面的灵活性。 我们还评估了深度学习正规化参数调整的影响。