Hamiltonian systems are differential equations which describe systems in classical mechanics, plasma physics, and sampling problems. They exhibit many structural properties, such as a lack of attractors and the presence of conservation laws. To predict Hamiltonian dynamics based on discrete trajectory observations, incorporation of prior knowledge about Hamiltonian structure greatly improves predictions. This is typically done by learning the system's Hamiltonian and then integrating the Hamiltonian vector field with a symplectic integrator. For this, however, Hamiltonian data needs to be approximated based on the trajectory observations. Moreover, the numerical integrator introduces an additional discretisation error. In this paper, we show that an inverse modified Hamiltonian structure adapted to the geometric integrator can be learned directly from observations. A separate approximation step for the Hamiltonian data avoided. The inverse modified data compensates for the discretisation error such that the discretisation error is eliminated. The technique is developed for Gaussian Processes.
翻译:汉密尔顿系统是描述古典力学、等离子物理和取样问题的系统的不同方程式。 它们显示出许多结构特性, 例如缺乏吸引者和存在保护法。 要根据离散的轨迹观测预测汉密尔顿的动态, 纳入以前对汉密尔顿结构的了解会大大改进预测。 通常通过学习该系统的汉密尔顿学知识, 然后将汉密尔顿矢量场与随机集成器相结合来完成这项工作。 但是, 汉密尔顿数据需要根据轨迹观测来比较。 此外, 数字集成器还引入了额外的离散错误。 在本文中, 我们显示可以直接从观测中学习一个反向修改的汉密尔顿结构。 避免汉密尔顿数据的一个单独的近距离步骤。 反向修改的数据可以弥补离散错误, 从而消除离散的错误。 该技术是为高斯进程开发的。