We apply artificial neural networks (ANNs) to nowcast quarterly GDP growth for the U.S. economy. Using the monthly FRED-MD database, we compare the nowcasting performance of five different ANN architectures: the multilayer perceptron (MLP), the one-dimensional convolutional neural network (1D CNN), the Elman recurrent neural network (RNN), the long short-term memory network (LSTM), and the gated recurrent unit (GRU). The empirical analysis presents results from two distinctively different evaluation periods. The first (2012:Q1 -- 2019:Q4) is characterized by balanced economic growth, while the second (2012:Q1 -- 2022:Q4) also includes periods of the COVID-19 recession. According to our results, longer input sequences result in more accurate nowcasts in periods of balanced economic growth. However, this effect ceases above a relatively low threshold value of around six quarters (eighteen months). During periods of economic turbulence (e.g., during the COVID-19 recession), longer input sequences do not help the models' predictive performance; instead, they seem to weaken their generalization capability. Combined results from the two evaluation periods indicate that architectural features enabling long-term memory do not result in more accurate nowcasts. Comparing network architectures, the 1D CNN has proved to be a highly suitable model for GDP nowcasting. The network has shown good nowcasting performance among the competitors during the first evaluation period and achieved the overall best accuracy during the second evaluation period. Consequently, first in the literature, we propose the application of the 1D CNN for economic nowcasting.
翻译:暂无翻译