In many machine learning tasks, a common approach for dealing with large-scale data is to build a small summary, {\em e.g.,} coreset, that can efficiently represent the original input. However, real-world datasets usually contain outliers and most existing coreset construction methods are not resilient against outliers (in particular, an outlier can be located arbitrarily in the space by an adversarial attacker). In this paper, we propose a novel robust coreset method for the {\em continuous-and-bounded learning} problems (with outliers) which includes a broad range of popular optimization objectives in machine learning, {\em e.g.,} logistic regression and $ k $-means clustering. Moreover, our robust coreset can be efficiently maintained in fully-dynamic environment. To the best of our knowledge, this is the first robust and fully-dynamic coreset construction method for these optimization problems. Another highlight is that our coreset size can depend on the doubling dimension of the parameter space, rather than the VC dimension of the objective function which could be very large or even challenging to compute. Finally, we conduct the experiments on real-world datasets to evaluate the effectiveness of our proposed robust coreset method.


翻译:在许多机器学习任务中,处理大型数据的共同方法是建立一个小摘要, 即 {em, 例如 } 核心集, 能够有效地代表原始输入。 然而, 真实世界 数据集通常包含外部值, 而大多数现有核心集构建方法没有抵御外部值的复原力( 特别是, 外部值可以在空间中被对立攻击者任意定位 ) 。 在本文中, 我们为 {em- 连续和受约束的学习} 问题( 外端) 提出了一个新颖的强大核心集 方法, 其中包括在机器学习中广泛流行的优化目标, 包括 { em, 例如 物流回归 和 $ k- 单位组合 。 此外, 我们强大的核心集可以在完全动态环境中有效维护。 据我们所知, 这是这些优化问题的首个强大和完全动态的核心集构建方法。 另一个亮点是, 我们的核心集大小取决于参数空间的翻番尺寸, 而不是目标功能的VC 层面, 它可能非常庞大, 甚至难以配置 。 最后, 我们对真实世界 数据 的实验方法进行稳健健的实验。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员