Fraud detection remains a challenging task due to the complex and deceptive nature of fraudulent activities. Current approaches primarily concentrate on learning only one perspective of the graph: either the topological structure of the graph or the attributes of individual nodes. However, we conduct empirical studies to reveal that these two types of features, while nearly orthogonal, are each independently effective. As a result, previous methods can not fully capture the comprehensive characteristics of the fraud graph. To address this dilemma, we present a novel framework called Relation-Aware GNN with transFormer~(RAGFormer) which simultaneously embeds both semantic and topological features into a target node. The simple yet effective network consists of a semantic encoder, a topology encoder, and an attention fusion module. The semantic encoder utilizes Transformer to learn semantic features and node interactions across different relations. We introduce Relation-Aware GNN as the topology encoder to learn topological features and node interactions within each relation. These two complementary features are interleaved through an attention fusion module to support prediction by both orthogonal features. Extensive experiments on two popular public datasets demonstrate that RAGFormer achieves state-of-the-art performance. The significant improvement of RAGFormer in an industrial credit card fraud detection dataset further validates the applicability of our method in real-world business scenarios.
翻译:暂无翻译