We propose a new empirical Bayes method for covariate-assisted multiple testing with false discovery rate (FDR) control, where we model the local false discovery rate for each hypothesis as a function of both its covariates and p-value. Our method refines the adaptive p-value thresholding (AdaPT) procedure by generalizing its masking scheme to reduce the bias and variance of its false discovery proportion estimator, improving the power when the rejection set is small or some null p-values concentrate near 1. We also introduce a Gaussian mixture model for the conditional distribution of the test statistics given covariates, modeling the mixing proportions with a generic user-specified classifier, which we implement using a two-layer neural network. Like AdaPT, our method provably controls the FDR in finite samples even if the classifier or the Gaussian mixture model is misspecified. We show in extensive simulations and real data examples that our new method, which we call AdaPT-GMM, consistently delivers high power relative to competing state-of-the-art methods. In particular, it performs well in scenarios where AdaPT is underpowered, and is especially well-suited for testing composite null hypothesis, such as whether the effect size exceeds a practical significance threshold.


翻译:我们提出了一个新的实验性贝耶斯方法,用于以假发现率(FDR)控制来进行共变辅助多重测试,其中我们将每种假设的当地虚假发现率作为共同变数和p值的函数。我们的方法改进了适应性P价值阈值(AdaPT)程序,其方法是推广其掩码方法,以减少其虚假发现比例估计值的偏差和差异,当拒绝数据集小于或某些无效的p值集中接近1时,则提高力量。 我们还采用了高斯混合模型,以有条件地分配给同变数的测试统计数据,用通用用户指定的分类器来模拟混合比例,我们使用双层神经网络来实施。与AdaPT一样,我们的方法在特定样本中可以明显控制FDR,即使分类器或高斯混合模型描述错误。我们在广泛的模拟和真实数据实例中显示,我们称之为ADAPT-GMM的新方法, 持续提供与竞争状态方法相对的高权力。特别是,它在模型的模型中,是否具有非常强的复合性临界值,在模型之下,是否具有很高的模型价值。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
专知会员服务
158+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月27日
Arxiv
7+阅读 · 2019年6月20日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
专知会员服务
158+阅读 · 2020年1月16日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员