Recent work demonstrated that flow-based invertible neural networks are promising tools for solving ambiguous inverse problems. Following up on this, we investigate how ten invertible architectures and related models fare on two intuitive, low-dimensional benchmark problems, obtaining the best results with coupling layers and simple autoencoders. We hope that our initial efforts inspire other researchers to evaluate their invertible architectures in the same setting and put forth additional benchmarks, so our evaluation may eventually grow into an official community challenge.
翻译:最近的工作表明,基于流动的、不可逆的神经网络是解决模糊反向问题的有希望的工具。 就此,我们调查十个不可逆的建筑和相关模型如何在两个直观的、低维的基准问题上取得最佳结果,与相交层和简单的自动转换器取得最佳结果。 我们希望我们的初步努力能够激励其他研究人员在同一环境中评价其不可逆的结构,并提出更多的基准,以便我们的评估最终会发展成一个正式的社区挑战。