We present an architecture that is effective for continual learning in an especially demanding setting, where task boundaries do not exist or are unknown, and where classes have to be learned online (with each example presented only once). To obtain good performance under these constraints, while mitigating catastrophic forgetting, we exploit recent advances in contrastive, self-supervised learning, allowing us to use a pre-trained, general purpose image encoder whose weights can be frozen, which precludes forgetting. The pre-trained encoder also greatly simplifies the downstream task of classification, which we solve with an ensemble of very simple classifiers. Collectively, the ensemble exhibits much better performance than any individual classifier, an effect which is amplified through specialisation and competitive selection. We assess the performance of the encoders-and-ensembles architecture on standard continual learning benchmarks, where it outperforms prior state-of-the-art by a large margin on the hardest problems, as well as in less familiar settings where the data distribution changes gradually or the classes are presented one at a time.


翻译:在一个特别困难的环境中,在任务界限不存在或未知的情况下,在班级必须在线学习(每个例子仅提供一次)的情况下,我们展示出一个在任务界限不存在或未知的特殊环境中,能够有效持续学习的架构。 为了在这些制约因素下取得良好的业绩,在减轻灾难性的遗忘的同时,我们利用了对比式的、自我监督的学习的最新进展,使我们能够使用一个经过预先训练的通用图像编码器,其重量可以被冻结,从而防止遗忘。 预先训练的编码器还大大简化了分类的下游任务,我们通过一个非常简单的分类器组合加以解决。 集体而言,共性的表现比任何单个分类器都好得多,这种效果是通过专门化和竞争性选择而放大的。 我们评估了在标准持续学习基准上的编码器和组合结构的性能,在标准持续学习基准上它比先前的状态差很多,在最棘手的问题上,以及数据分配逐渐变化或某个班级的不熟悉的环境里。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
31+阅读 · 2021年7月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
24+阅读 · 2021年1月25日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
17+阅读 · 2021年2月15日
Arxiv
24+阅读 · 2021年1月25日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
17+阅读 · 2018年4月2日
Top
微信扫码咨询专知VIP会员