Learning feature interactions is the key to success for the large-scale CTR prediction in Ads ranking and recommender systems. In industry, deep neural network-based models are widely adopted for modeling such problems. Researchers proposed various neural network architectures for searching and modeling the feature interactions in an end-to-end fashion. However, most methods only learn static feature interactions and have not fully leveraged deep CTR models' representation capacity. In this paper, we propose a new model: DynInt. By extending Polynomial-Interaction-Network (PIN), which learns higher-order interactions recursively to be dynamic and data-dependent, DynInt further derived two modes for modeling dynamic higher-order interactions: dynamic activation and dynamic parameter. In dynamic activation mode, we adaptively adjust the strength of learned interactions by instance-aware activation gating networks. In dynamic parameter mode, we re-parameterize the parameters by different formulations and dynamically generate the parameters by instance-aware parameter generation networks. Through instance-aware gating mechanism and dynamic parameter generation, we enable the PIN to model dynamic interaction for potential industry applications. We implement the proposed model and evaluate the model performance on real-world datasets. Extensive experiment results demonstrate the efficiency and effectiveness of DynInt over state-of-the-art models.
翻译:学习特征互动是Ads 排名和推荐人系统中大规模 CTR 预测成功的关键。 在行业中,基于深神经网络的模型被广泛采用来模拟这些问题。 研究人员提议了各种神经网络结构,以便以端到端的方式搜索特征互动并建模。 然而,大多数方法只学习静态特征互动,而没有充分利用深度 CTR 模型的演示能力。 在本文件中,我们建议了一个新的模型: DynInt。 通过扩展多边-互动-网络网络(PIN),该模型学习高阶互动,反复学习动态和数据依赖性,DynInt进一步生成了两种模式,用于模拟动态更高顺序互动的模型:动态激活和动态参数。在动态激活模式中,我们调整了通过实例觉悟激活网络所学到的互动的强度。 在动态参数模式模式模式中,我们通过实例认知生成参数并动态生成参数。 通过实例识别机制和动态参数生成,我们使 PIN 能够模拟动态互动和动态参数生成两种模式,用于潜在的产业性业绩。 我们用实例- 执行拟议的模型和动态数据测试结果。