We investigate some Bernstein-Gelfand-Gelfand (BGG) complexes on bounded Lipschitz domains in $\mathbb{R}^n$ consisting of Sobolev spaces. In particular, we compute the cohomology of the conformal deformation complex and the conformal Hessian complex in the Sobolev setting. The machinery does not require algebraic injectivity/surjectivity conditions between the input spaces, and allows multiple input complexes. As applications, we establish a conformal Korn inequality in two space dimensions with the Cauchy-Riemann operator and an additional third order operator with a background in M\"obius geometry. We show that the linear Cosserat elasticity model is a Hodge-Laplacian problem of a twisted de-Rham complex. From this cohomological perspective, we propose potential generalizations of continuum models with microstructures.
翻译:我们调查一些伯恩斯坦-盖尔方德-盖尔方德(BGG)综合体(BGG)在由索博列夫空间组成的苏博列夫空间构成的捆绑的利普西茨域中,用$\mathb{R ⁇ n$(BGG)来调查一些伯恩斯坦-盖尔方德-盖尔方德(BGG)综合体(BBBG)综合体(BBGG)综合体(BBBB)。我们特别计算了索博列夫环境中的相容变形复合体和相容赫森综合体的相形形色色体。机器不需要输入空间之间的代数射/感性条件,而允许多个输入复合复合体。作为应用,我们与Cauchy-里曼操作员(Cauchy-Riemann)在两个空间维度方面建立了符合科尔恩的不平等,另外一个具有M\“奥比乌斯”几何学背景的第三级操作者。我们展示了线形的科萨拉特弹性模型是扭曲德-拉普尔格-拉兹综合体的问题。我们提出了与微结构的连续模型的可能概括模型的概括化。我们建议。