In this paper we study the maximum degree of interaction which may emerge in distributed systems. It is assumed that a distributed system is represented by a graph of nodes interacting over edges. Each node has some amount of data. The intensity of interaction over an edge is proportional to the product of the amounts of data in each node at either end of the edge. The maximum sum of interactions over the edges is searched for. This model can be extended to other interacting entities. For bipartite graphs and odd-length cycles we prove that the greatest degree of interaction emerge when the whole data is concentrated in an arbitrary pair of neighbors. Equal partitioning of the load is shown to be optimum for complete graphs. Finally, we show that in general graphs for maximum interaction the data should be distributed equally between the nodes of the largest clique in the graph. We also present in this context a result of Motzkin and Straus from 1965 for the maximal interaction objective.
翻译:在本文中,我们研究了分布式系统中可能出现的最大互动程度。 假设分布式系统代表的是一个在边缘上互动的节点图。 每个节点都有一定数量的数据。 边缘上的交互强度与边缘两端中每个节点的数据量的产物成正比。 边缘上的互动最大和最大之和会搜索。 这个模型可以扩展到其他互动实体。 对于双边图和奇长周期, 我们证明当整个数据集中在一对任意的相邻方时, 最大程度的交互作用会出现。 对完整图表来说, 平均的负荷分配是最佳的。 最后, 我们显示, 在一般的图表中, 数据的最大交互作用点应该平均分布在图形中的最大节点之间。 我们在此还介绍了1965年Motzkin 和 Straus 的结果, 用于最大互动目标 。